Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5878-5888, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498471

RESUMO

Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Log D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.


Assuntos
Nylons , Purificação da Água , Osmose , Purificação da Água/métodos , Membranas Artificiais , Filtração
2.
Water Res ; 247: 120774, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898000

RESUMO

While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.


Assuntos
Nylons , Purificação da Água , Permeabilidade , Nylons/química , Membranas Artificiais , Purificação da Água/métodos , Cloreto de Sódio
3.
J Hazard Mater ; 459: 132239, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567140

RESUMO

The treatment of tetramethylammonium hydroxide (TMAH)-bearing wastewater, generated in the electronic and semiconductor industries, raises significant concerns due to the neurotoxic, recalcitrant, and bio-inhibiting effects of TMAH. In this study, we proposed the use of an anaerobic hydrolysis bioreactor (AHBR) for TMAH removal, achieving a high removal efficiency of approximately 85%, which greatly surpassed the performance of widely-used advanced oxidation processes (AOPs). Density functional theory calculations indicated that the unexpectedly poor efficiency (5.8-8.0%) of selected AOPs can be attributed to the electrostatic repulsion between oxidants and the tightly bound electrons of TMAH. Metagenomic analyses of the AHBR revealed that Proteobacteria and Euryarchaeota played a dominant role in the transformation of TMAH through processes such as methyl transfer, methanogenesis, and acetyl-coenzyme A synthesis, utilizing methyl-tetrahydromethanopterin as a substrate. Moreover, several potential functional genes (e.g., mprF, basS, bcrB, sugE) related to TMAH resistance have been identified. Molecular docking studies between five selected proteins and tetramethylammonium further provided evidence supporting the roles of these potential functional genes. This study demonstrates the superiority of AHBR as a pretreatment technology compared to several widely-researched AOPs, paving the way for the proper design of treatment processes to abate TMAH in semiconductor wastewater.


Assuntos
Compostos de Amônio Quaternário , Águas Residuárias , Anaerobiose , Hidrólise , Simulação de Acoplamento Molecular , Compostos de Amônio Quaternário/metabolismo
4.
Environ Sci Technol ; 57(15): 6342-6352, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37010389

RESUMO

Selective removal of trace, highly toxic arsenic from water is vital to ensure an adequate and safe drinking water supply for over 230 million people around the globe affected by arsenic contamination. Here, we developed an Fe-based metal-organic framework (MOF) with a ferrocene (Fc) redox-active bridge (termed Fe-MIL-88B-Fc) for the highly selective removal of As(III) from water. At a cell voltage of 1.2 V, Fe-MIL-88B-Fc can selectively separate and oxidize As(III) into the less harmful As(V) state in the presence of a 100- to 1250-fold excess of competing electrolyte, with an uptake capacity of >110 mg-As g-1 adsorbent. The high affinity between the uncharged As(III) and the µ3-O trimer (-36.55 kcal mol-1) in Fe-MIL-88B-Fc and the electron transfer between As(III) and redox-active Fc+ synergistically govern the selective capture and conversion of arsenic. The Fe-based MOF demonstrates high selectivity and capacity to remediate arsenic-contaminated natural water at a low energy cost (0.025 kWh m-3). This study provides valuable guidance for the tailoring of effective and robust electrodes, which can lead to a wider application of electrochemical separation technologies.


Assuntos
Arsênio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Humanos , Água , Poluentes Químicos da Água/análise , Oxirredução , Adsorção
5.
Environ Sci Technol ; 56(23): 17266-17277, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399419

RESUMO

Tannic acid (TA)-FeIII nanofiltration (NF) membrane has been demonstrated to possess more favorable removal of trace organic contaminants (TrOCs) over the conventional polyamide NF membrane. However, the drawback of acid instability severely hinders the practical application of TA-FeIII NF membrane in the treatment of (weak) acidic wastewater containing TrOCs (e.g., pharmaceutical wastewater, surface water, and drinking water). Herein, we introduced the MIL-101(Cr) nanoparticle, a kind of metal-organic framework (MOF), into the TA-FeIII selective layer to enhance the membrane acid stability. The acid-tolerance parameter of MIL-101(Cr)-stabilized TA-FeIII membrane (TA-FeIII-MOF membrane, 12,000 ppm/s-1) was two orders of magnitude larger than that of the TA-FeIII membrane (50 ppm/s-1), and the TA-FeIII-MOF membrane can withstand acid treatment at pH = 4 for more than 30 days. Meanwhile, the TA-FeIII-MOF membrane displayed increased water permeance from 9.5 to 12.7 L/(m2·h·bar) after the MOF addition, without compromising the selectivity. The enhanced acid stability for the TA-FeIII-MOF membrane was ascribed to an intercoordination mechanism, where FeIII centers (from TA-FeIII complex) coordinated with -COOH groups (from terephthalic acid of MOF) and CrIII centers (from MOF) coordinated with -OH groups (from TA of TA-FeIII complex), which was verified by the density functional theory calculation. This study highlights a new approach for the development of a TA-FeIII-based NF membrane with markedly enhanced acid stability, which is important for its real application in wastewater treatment and water reuse.


Assuntos
Estruturas Metalorgânicas , Águas Residuárias , Água , Taninos , Compostos Férricos
6.
RSC Adv ; 12(39): 25424-25432, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199312

RESUMO

Rapid global industrialization accompanies the discharge of industrial wastewater. p-Toluenesulfonic acid (PTSA), a kind of aromatic sulfonate that belongs to the refractory organic pollutant, is one of the most widely used chemicals in pharmaceutical, dye, petrochemical and plastic industries. In this study, we developed a filtration-enhanced electro-Fenton (FEEF) reactor to remove PTSA from synthetic wastewater. A filtration-enhanced stainless-steel mesh (FESSM) was used as the cathode. Under the optimal operating conditions of applied voltage 2.5 V, pH = 3.0, addition of 0.2 mM Fe2+ and 1.0 mM H2O2 for 120 min, the removal efficiency of PTSA (initial concentration of 100 mg L-1) could reach 92.6%. Compared with the control anodic oxidation and conventional Fenton system, the FEEF system showed higher ˙OH yield and PTSA removal efficiency, with a lower effluent biological toxicity and operating cost. The enhanced mass transfer rate by the filtration in the FEEF system accelerated the regeneration of catalyst Fe2+ and further promoted the heterogeneous reactions. The Fe species on the surface of FESSM cathode possessed a gradient distribution, the inner layer was dominated by Fe and the outer layer was Fe3+. The degradation pathways of PTSA were proposed, including methyl hydroxylation, sulfonyl hydroxylation, ß-hydrogen hydroxylation, and ring-opening reaction. These results demonstrate that the novel FEEF system is a promising technology for the removal of refractory organic pollutants from industrial wastewater.

7.
Water Res ; 226: 119221, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36242936

RESUMO

The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.


Assuntos
Águas Residuárias , Purificação da Água , Osmose , Membranas Artificiais , Dióxido de Silício
8.
Environ Sci Technol ; 56(19): 14069-14079, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126287

RESUMO

Nanofiltration (NF) membranes are playing increasingly crucial roles in addressing emerging environmental challenges by precise separation, yet understanding of the selective transport mechanism is still limited. In this work, the underlying mechanisms governing precise selectivity of the polyamide NF membrane were elucidated using a series of monovalent cations with minor hydrated radius difference. The observed selectivity of a single cation was neither correlated with the hydrated radius nor hydration energy, which could not be explained by the widely accepted NF model or ion dehydration theory. Herein, we employed an Arrhenius approach combined with Monte Carlo simulation to unravel that the transmembrane process of the cation would be dominated by its pairing anion, if the anion has a greater transmembrane energy barrier, due to the constraint of anion-cation coupling transport. Molecular dynamics simulations further revealed that the distinct hydration structure was the primary origin of the energy barrier difference of cations. The cation having a larger incompressible structure after partial dehydration through subnanopores would induce a more significant ion-membrane interaction and consequently a higher energy barrier. Moreover, to validate our proposed mechanisms, a membrane grafting modification toward enlarging the energy barrier difference of dominant ions achieved a 3-fold enhancement in ion separation efficiency. Our work provides insights into the precise separation of ionic species by NF membranes.


Assuntos
Desidratação , Nylons , Ânions/química , Cátions Monovalentes , Humanos , Simulação de Dinâmica Molecular
9.
J Hazard Mater ; 439: 129672, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104901

RESUMO

Removal of neonicotinoids (NEOs) from contaminated water is of great importance for both ecological environment and human health. However, conventional Fenton process might be insufficient for NEOs removal due to short lifetime for generated HO• and limited Fe3+/Fe2+ redox cycle. Advancing Fenton process to produce singlet oxygen can be an effective route to improve its efficacy for NEOs removal. Herein, we developed a molybdenum sulfide modified ceramic membrane-integrated Fenton-like system to achieve efficient catalytic removal of NEOs. The reduced Mo0 and Mo4+ could promote the reduction process of Fe3+ to Fe2+, improving the activation efficiency of hydrogen peroxide (H2O2) and the generation of superoxide radical (O2•-). Consequently, the coexisting Mo6+ reacted with O2•- to generate 1O2. The membrane enabled the pollutants to adequately contact oxidants due to the enhanced convective mass transfer. The functionalized membrane exhibited stable catalytic performance for clothianidin (CLO, a kind of NEOs, 10 mg/L) removal (degradation efficiency > 85%). The presence of 1O2 enabled the dechlorination and hydroxylation of CLO and thus reduced the toxicity of wastewater. Our work sheds light on the use of functionalized ceramic membrane integrated catalytic Fenton system for effective environmental remediation.


Assuntos
Peróxido de Hidrogênio , Oxigênio Singlete , Cerâmica , Humanos , Ferro , Neonicotinoides
10.
Environ Sci Technol ; 56(17): 12563-12572, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973135

RESUMO

Removal of irrecoverable foulants, which cannot be removed by conventional chemical cleaning, from end-of-life (EOL) membranes remains a substantial challenge due to the strong interaction between the foulants and membrane matrix. Herein, we developed a green solvent cleaning strategy based on Hansen solubility parameters to achieve the removal of irrecoverable foulants from the EOL polyvinylidene fluoride (PVDF) membranes serving for 6 years in a large-scale membrane bioreactor (MBR). We selected methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (MDMO) as the green solvent due to its strong interaction with the PVDF material, which might enable the substitution of binding sites of irrecoverable foulants. After the MDMO cleaning, the water permeance of the EOL membrane recovered from 47.6 ± 4.7 to 390.9 ± 8.2 L m-2 h-1 bar-1 (with a flux recovery ratio of ∼100%), with its rejection ability and stability maintained. The main components of irrecoverable fouling were humic acid-like substances revealed by spectroscopic characterization. Molecular dynamic simulation further elucidated the cleaning mechanisms: the strong interaction of MDMO-PVDF enabled substitution of binding sites of irrecoverable foulants by MDMO, followed by desorption of the irrecoverable foulants from PVDF and diffusion of the irrecoverable foulants into the bulk phase of MDMO. Evaluation in a lab-scale MBR treating real municipal wastewater verified the reusability of green solvent cleaned-EOL membranes. This study provides a novel, effective, and green cleaning strategy to remove irrecoverable foulants and prolong the service life of membranes in MBRs, facilitating sustainable wastewater treatment using membrane-based processes.


Assuntos
Membranas Artificiais , Purificação da Água , Reatores Biológicos , Solventes , Águas Residuárias/química , Purificação da Água/métodos
11.
Water Res ; 219: 118545, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550968

RESUMO

Electrochemical filtration system (EFS) has received broad interest due to its high efficiency for organic contaminants removal. However, the porous nature of electrodes and flow-through operation mode make it susceptible to potential fouling. In this work, we systematically investigated the impacts of biofouling on sulfanilic acid (SA) removal and effluent toxicity in an EFS. Results showed that the degradation efficiency of SA slightly deteriorated from 92.3% to 81.1% at 4.0 V due to the electrode fouling. Surprisingly, after the occurrence of fouling, the toxicity (in terms of luminescent bacteria inhibition) of the EFS effluent decreased from 72.3% to 40.2%, and cytotoxicity assay exhibited similar tendency. Scanning electron microscopy and confocal laser scanning microscopy analyses revealed that biofouling occurred on the porous cathode, and live microorganisms were the dominant contributors, which are expected to play an important role in toxicity suppression. The relative abundance of Flavobacterium genus, related to the degradation of p-nitrophenol (an aromatic intermediate product of SA), increased on the membrane cathode after fouling. The analysis of degradation pathway confirmed the synergetic effects of electrochemical oxidation and biodegradation in removal of SA and its intermediate products in a bio-fouled EFS, accounting for the decrease of the effluent toxicity. Results of our study, for the first time, highlight the critical role of biofouling in detoxication using EFS for the treatment of contaminated water.


Assuntos
Incrustação Biológica , Purificação da Água , Filtração/métodos , Membranas Artificiais , Águas Residuárias , Água , Poluição da Água , Purificação da Água/métodos
12.
Water Res ; 219: 118539, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526429

RESUMO

Membrane fouling, especially biofouling induced by biofilm formation on membranes, can result in frequent cleaning or even replacement of membranes. Fabrication of membrane with excellent antibiofouling property is quite attractive due to its effectiveness and low-impact on the operation of membrane-based process. Herein, a cationic antibacterial agent, quaternary ammonium compound (QAC), was intercalated into the interlayer spaces of the MgAl layered double hydroxide (QAC/LDH) by self-assembly. The QAC/LDH composite was incorporated into polyethersulfone (PES) ultrafiltration (UF) membrane (PES-QLDH). The QAC/LDH enhanced the hydrophilicity, water flux, and resistance to organic fouling for the PES-QLDH membrane. The PES-QLDH membrane exhibited superior antibiofouling performance than the control PES membrane, with deposition of a thinner biofilm layer consisted of almost dead cells. The superior antibacterial activity inhibits the adhesion and growth of bacteria on the membrane surface, effectively retarding the formation of biofilms. Importantly, the synergistic effect of QAC and LDH in the PES-QLDH membrane resulted in a high biocidal activity based on both direct and indirect killing mechanisms. The PES-QLDH membrane maintained a stable and high antibacterial activity after several fouling-cleaning cycles. These results imply that the PES-QLDH membrane provides an effective and promising strategy for its long-term application in wastewater treatment.


Assuntos
Incrustação Biológica , Purificação da Água , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Compostos de Amônio Quaternário , Ultrafiltração
13.
iScience ; 25(5): 104342, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602955

RESUMO

The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.

14.
Sci Adv ; 8(10): eabm4149, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263126

RESUMO

While reverse osmosis (RO) is the leading technology to address the global challenge of water scarcity through desalination and potable reuse of wastewater, current RO membranes fall short in rejecting certain harmful constituents from seawater (e.g., boron) and wastewater [e.g., N-nitrosodimethylamine (NDMA)]. In this study, we develop an ultraselective polyamide (PA) membrane by enhancing interfacial polymerization with amphiphilic metal-organic framework (MOF) nanoflakes. These MOF nanoflakes horizontally align at the water/hexane interface to accelerate the transport of diamine monomers across the interface and retain gas bubbles and heat of the reaction in the interfacial reaction zone. These mechanisms synergistically lead to the formation of a crumpled and ultrathin PA nanofilm with an intrinsic thickness of ~5 nm and a high cross-linking degree of ~98%. The resulting PA membrane delivers exceptional desalination performance that is beyond the existing upper bound of permselectivity and exhibited very high rejection (>90%) of boron and NDMA unmatched by state-of-the-art RO membranes.

15.
Water Res ; 216: 118299, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325824

RESUMO

Membrane fouling is one of major obstacles in the application of membrane technologies. Accurately predicting or simulating membrane fouling behaviours is of great significance to elucidate the fouling mechanisms and develop effective measures to control fouling. Although mechanistic/mathematical models have been widely used for predicting membrane fouling, they still suffer from low accuracy and poor sensitivity. To overcome the limitations of conventional mathematical models, artificial intelligence (AI)-based techniques have been proposed as powerful approaches to predict membrane filtration performance and fouling behaviour. This work aims to present a state-of-the-art review on the advances in AI algorithms (e.g., artificial neural networks, fuzzy logic, genetic programming, support vector machines and search algorithms) for prediction of membrane fouling. The working principles of different AI techniques and their applications for prediction of membrane fouling in different membrane-based processes are discussed in detail. Furthermore, comparisons of the inputs, outputs, and accuracy of different AI approaches for membrane fouling prediction have been conducted based on the literature database. Future research efforts are further highlighted for AI-based techniques aiming for a more accurate prediction of membrane fouling and the optimization of the operation in membrane-based processes.


Assuntos
Inteligência Artificial , Membranas Artificiais , Algoritmos , Lógica Fuzzy , Redes Neurais de Computação
16.
Environ Sci Technol ; 55(1): 655-664, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103901

RESUMO

Heavy metals in industrial wastewaters are typically present as stable metal-organic complexes with their cost-effective treatment remaining a significant challenge. Herein, a self-enhanced decomplexation scenario is developed using an electrochemical membrane filtration (EMF) system for efficient decomplexation and Cu recovery. Using Cu-EDTA as a model pollutant, the EMF system achieved 81.5% decomplexation of the Cu-EDTA complex and 72.4% recovery of Cu at a cell voltage of 3 V. The •OH produced at the anode first attacked Cu-EDTA to produce intermediate Cu-organic complexes that reacted catalytically with the H2O2 generated from the reduction of dissolved oxygen at the cathode to initiate chainlike self-enhanced decomplexation in the EMF system. The decomplexed Cu products were further reduced or precipitated at the cathodic membrane surface thereby achieving efficient Cu recovery. By scavenging H2O2 (excluding self-enhanced decomplexation), the rate of decomplexation decreased from 8.8 × 10-1 to 4.1 × 10-1 h-1, confirming the important role of self-enhanced decomplexation in this system. The energy efficiency of this system is 93.5 g kWh-1 for Cu-EDTA decomplexation and 15.0 g kWh-1 for Cu recovery, which is much higher than that reported in the previous literature (i.e., 7.5 g kWh-1 for decomplexation and 1.2 g kWh-1 for recovery). Our results highlight the potential of using EMF for the cost-effective treatment of industrial wastewaters containing heavy metals.


Assuntos
Peróxido de Hidrogênio , Águas Residuárias , Cobre , Ácido Edético , Oxirredução
17.
J Hazard Mater ; 404(Pt B): 124198, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068987

RESUMO

Sulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.9% removal of SDZ, significantly higher than that of a control membrane biofilm reactor (MBfR) without electric field applied (44.3%) or an electrolytic reactor without biofilm (77.3%). Moreover, the relative abundance of ARGs in the EMBfR was only 32.0% of that in MBfR, suggesting that the production of ARGs was significantly suppressed in the EMBfR. The underlying mechanisms relate to (i) the change of the microbial community structure in the presence of the electric field, leading to the enrichment of potential aromatic-degrading microorganisms (e.g., Rhodococcus accounting for 51.0% of the total in the EMBfR compared to 10.0% in the MBfR) and (ii) the unique degradation pathway of SDZ in the EMBfR attributed to the synergistic effect between the electrochemical and biological processes. Our study highlights the benefits of EMBfR in removing pharmaceuticals from contaminated waters and suppressing the development (and transfer) of ARGs in the environment.


Assuntos
Sulfonamidas , Águas Residuárias , Antibacterianos/farmacologia , Biofilmes , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Sulfadiazina
18.
Adv Colloid Interface Sci ; 282: 102204, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32650145

RESUMO

Thin-film composite (TFC) structured membranes based on polyamide (PA) chemistry is the gold standard of nanofiltration and reverse osmosis-based technologies for water purification and desalination. Constructing interlayer between porous substrate and PA layer is a promising strategy to address the ubiquitous trade-off between permeability and selectivity, which is typically encountered by conventional TFC PA membranes. The progress in the interlayer benefits the precise control of interfacial polymerization process, which therefore can tailor the structure and performance of advanced TFC PA membranes. This review critically summarizes the recent advances in TFC PA membranes mediated by interlayer. The mechanisms of interlayer regulating the IP process and PA structure are first discussed based on available literature. Structure and performance of novel TFC PA membranes based on three kinds of interlayers, i.e., organic coatings, nanomaterial and nanocomposite interlayers, are systematically reviewed. Finally, perspectives and future efforts needed are proposed for interlayer based TFC PA membranes. This review offers comprehensive understanding and useful guidance on the rational design of advanced membranes mediated by interlayers for desalination and water purification.

19.
Membranes (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629838

RESUMO

Widespread applications of nanofiltration (NF) and reverse osmosis (RO)-based processes for water purification and desalination call for high-performance thin-film composite (TFC) membranes. In this work, a novel and facile modification method was proposed to fabricate high-performance thin-film composite nanofiltration membrane by introducing Ca2+ in the heat post-treatment. The introduction of Ca2+ induced in situ Ca2+-carboxyl intra-bridging, leading to the embedment of Ca2+ in the polyamide (PA) layer. This post modification enhanced the hydrophilicity and surface charge of NF membranes compared to the pristine membrane. More interestingly, the modified membrane had more nodules and exhibited rougher morphology. Such changes brought by the addition of Ca2+ enabled the significant increase of water permeability (increasing from 17.9 L·m-2·h-1·bar-1 to 29.8 L·m-2·h-1·bar-1) while maintaining a high selectivity (Na2SO4 rejection rate of 98.0%). Furthermore, the intra-bridging between calcium and carboxyl imparted the NF membranes with evident antifouling properties, exhibiting milder permeability decline of 4.2% (compared to 16.7% of NF-control) during filtration of sodium alginate solution. The results highlight the potential of using Ca2+-carboxyl intra-bridging post-treatment to fabricate high-performance TFC membranes for water purification and desalination.

20.
Environ Sci Technol ; 54(12): 7619-7628, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32432876

RESUMO

Removal of pharmaceutically active compounds (PhACs) is of great importance in wastewater reclamation due to their potent negative impacts on human health. Typical polyamide nanofiltration (NF) membranes are negatively charged, which compromises their rejection rate of positively charged PhACs. Herein, we propose to rationally design a novel thin-film nanocomposite (TFN) NF membrane featuring a dually charged metal organic framework (MOF) to effectively remove both positively and negatively charged PhACs. Ethylenediamine (ED) was grafted to the coordinately unsaturated metal sites inside the MIL-101(Cr). The resulting ED-MIL-101(Cr) contained both strong positively charged amine groups inside its channels and negatively charged carboxyl groups at its surface. This dually charged nature of the MOF nanoparticles enabled the ED-MIL-101(Cr)-containing TFN membrane to achieve high rejection rates (mostly >90%) for both positively (terbutaline, atenolol, fluoxetine) and negatively charged PhACs (ketoprofen, diclofenac, bezafibrate). At the same time, the ED-MIL-101(Cr) TFN membrane had greatly improved water permeance (140% over the control membrane with MOF loading). Calculations based on density functional theory further confirmed the large energy barrier for the migration of both negatively and positively charged PhACs across the nanochannels of ED-MIL-101(Cr). This study highlights a promising potential of dually charged MOF-TFN membranes for efficient removal of trace organic contaminants in wastewater reclamation.


Assuntos
Membranas Artificiais , Nanocompostos , Diclofenaco , Nylons , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...